首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153362篇
  免费   11164篇
  国内免费   21509篇
化学   113106篇
晶体学   2852篇
力学   3819篇
综合类   1721篇
数学   20885篇
物理学   43652篇
  2023年   1930篇
  2022年   2349篇
  2021年   4011篇
  2020年   4374篇
  2019年   4244篇
  2018年   3557篇
  2017年   4793篇
  2016年   5180篇
  2015年   4508篇
  2014年   6183篇
  2013年   11979篇
  2012年   9621篇
  2011年   9481篇
  2010年   8049篇
  2009年   10620篇
  2008年   10608篇
  2007年   11164篇
  2006年   9845篇
  2005年   7928篇
  2004年   7309篇
  2003年   6129篇
  2002年   5236篇
  2001年   4430篇
  2000年   3787篇
  1999年   3309篇
  1998年   2926篇
  1997年   2376篇
  1996年   2098篇
  1995年   2248篇
  1994年   1982篇
  1993年   1723篇
  1992年   1635篇
  1991年   1159篇
  1990年   915篇
  1989年   839篇
  1988年   730篇
  1987年   583篇
  1986年   526篇
  1985年   598篇
  1984年   504篇
  1983年   285篇
  1982年   502篇
  1981年   668篇
  1980年   589篇
  1979年   613篇
  1978年   502篇
  1977年   377篇
  1976年   317篇
  1974年   124篇
  1973年   213篇
排序方式: 共有10000条查询结果,搜索用时 42 毫秒
71.
High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5?μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, IR spectroscopy etc. III-V compounds with a lattice constant of about 6.1?Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ~8?μm in case of pseudomorphic AlGaAs-based quantum cascade lasers or requires utilization of thick metamorphic InxAl1-xAs buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded InxAl1-xAs MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As heterostructures with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6?μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at T?=?10–300?K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including in-situ reflection high-energy electron diffraction, atomic force microscopy (AFM), scanning and transmission electron microscopies, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As4/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3?×?107 cm?2), increase of the thickness of the low-TD-density near-surface MBL region to 250–300?nm, the extremely low surface roughness with the RMS value of 1.6–2.4?nm, measured by AFM, as well as rather high 3.5?μm-PL intensity at temperatures up to 300?K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.  相似文献   
72.
By 5-h reaction of cis-[RuIICl2(DMSO)4] (M2) with K102-P2W17O61] (M3) in ice-cooled, HCl-acidic aqueous solution, a water-soluble 1:2-type diamagnetic ruthenium(II) complex of formula K18[RuII(DMSO)2(P2W17O61)2]·35H2O (M1) was unexpectedly obtained as an analytically pure, homogeneous tan-colored solid, in which two DMSO ligands are coordinated to the ruthenium(II) atom. The cytotoxic potential of the complex was tested on C33A, DLD-1, and HepG-2 cancer cells and human normal embryonic lung fibroblasts cell MRC-5; the viability of the treated cells was evaluated by MTT assay. The mode of cell death was assessed by morphological study of DNA damage and apoptosis assays. Compound M1 induced cell death in a dose-dependent manner, and the mode of cell death was essentially apoptosis though necrosis was also noticed. Cell cycle analysis by flow cytometry indicated that M1 caused cell cycle arrest and accumulated cells in S phase.  相似文献   
73.
Along with the rapid development of industry, VOCs gradually move into the spotlight, and now become a kind of harmful environmental pollutants that cannot be overlooked. This paper introduces the hazards of VOCs and the common catalytic combustion catalysts, noble metal catalysts and non-noble metal catalysts, for the elimination of VOCs. Perovskite catalysts, as one of the non-noble catalysts, play an important role in the field of catalytic combustion in recent years. According to the classification of elements doping in perovskites, the research achievements in the past five years were analyzed and reviewed. In addition, this paper also analyzes and elaborates the reaction kinetics and QSAR/QSPR models for the introduction of structural properties and reaction mechanisms.  相似文献   
74.
75.
Recently, we developed a convenient microfluidic droplet generation device based on vacuum‐driven fluid manipulation with a piezoelectric diaphragm micropump. In the present study built on our previous work, we investigate the influence of settings applied to the piezoelectric pump, such as peak‐to‐peak drive voltage (Vp‐p) and wave frequency, on droplet generation characteristics. Stepwise adjustments to the drive voltage in ±10‐Vp‐p increments over the range of 200?250 Vp‐p during droplet creation revealed that the droplet generation rate could be reproducibly controlled at a specific drive voltage. The droplet generation rate switched within <0.5 s after the input of a new voltage. Although the droplet generation rate depended on the drive voltage, this setting had almost no influence on droplet size. The frequency over the selected range (50?60 Hz) did not markedly influence the droplet generation rate or droplet size. We show that the current fluid manipulation system can be conveniently used for both droplet generation and for rapid droplet reading, which is required in many microfluidic‐based applications.  相似文献   
76.
In this study, multiwalled carbon nanotube (MWCNT) was modified by the pyridine group using a silane agent and characterized by infrared spectroscopy (IR), thermal analysis (TG/DTA), and elemental analysis (CHN) and scanning electron microscopy (SEM). The application of this sorbent was investigated in determination of lead ions in aqueous samples, using flame atomic absorption spectrometry (FAAS). Through this study, different parameters such as pH and sample flow rate on adsorption process and eluent concentration, volume and flow rate were optimized. The limit of detection (LOD), the relative standard deviation and the recovery of the method were 2 ng mL?1, 1.3% and 99.7%, respectively. Two standard reference materials (NIST 1571 and NIST 1572) were used to verify accuracy of this method. Finally, the sorbent was successfully applied for extraction and determination of low levels of Pb(II) ions in aqueous samples.  相似文献   
77.
《中国化学快报》2019,30(11):1951-1954
Utilization of intermolecular Friedel-Crafts and intramolecular condensation reaction,novel 1,3-di-(pyridine-2-yl)benzene(N,C,N terdentate) skeleton with electro-withdrawing group in 6' position of pyridyl and a cyclization between 6' position of pyridyl and 6 position of benzyl ring were firstly designed and synthesized.The structures of these novel N,C,N terdentate were confirmed by NMR,MS and X-ray single crystalanalyses.The photophysical properties of these compounds were briefly explored.  相似文献   
78.
Two‐dimensional (2D) PtSe2 shows the most prominent layer‐dependent electrical properties among various 2D materials and high catalytic activity for hydrogen evolution reaction (HER), and therefore, it is an ideal material for exploring the structure–activity correlations in 2D systems. Here, starting with the synthesis of single‐crystalline 2D PtSe2 with a controlled number of layers and probing the HER catalytic activity of individual flakes in micro electrochemical cells, we investigated the layer‐dependent HER catalytic activity of 2D PtSe2 from both theoretical and experimental perspectives. We clearly demonstrated how the number of layers affects the number of active sites, the electronic structures, and electrical properties of 2D PtSe2 flakes and thus alters their catalytic performance for HER. Our results also highlight the importance of efficient electron transfer in achieving optimum activity for ultrathin electrocatalysts. Our studies greatly enrich our understanding of the structure–activity correlations for 2D catalysts and provide new insight for the design and synthesis of ultrathin catalysts with high activity.  相似文献   
79.
The nature of the 2e/12c bond and its conversion to a carbon-carbon single bond in phenalenyl dimers have prompted a great deal of interests recently. In this work, we theoretically investigated a series of π-stacking phenalenyl derivatives with 2e/12c bonding character by density functional theory (DFT) calculations to elucidate origin of this unusual bond conversion. Results show that bond-conversion of the phenalenyl dimer easily occurs at room-temperature both dynamically and thermodynamically. However, bond-conversion of hetero π-stacking adducts, in which the two center carbon atoms were substituted by boron and nitrogen atoms, respectively, is much more difficult, because the 2e/12c bond is stabilized by its charge transfer character. Consequently, the bond-conversion is an endothermic process, albeit with a low conversion barrier. Interestingly, Lewis acid-base interactions would be induced by substitution of the center nitrogen atom to phosphorus atom. The 2e/12c bond is further stabilized by 5.9 kcal mol−1 and its conversion is also thermodynamically unfavorable.  相似文献   
80.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号